Linear Models

# Main loop for training
while True:
# Forward
Alpha = V @ X_train.T #X_train[i].reshape(y_train[i].size,1)
B = 1/(1 + np.exp(-(Alpha - Gamma)))
Beta = W @ B
Y_hat = 1/(1 + np.exp(-(Beta - Theta)))
y_hat = Y_hat.T
Ek = 0.5*np.sum((y_hat - y_train)**2,axis=1)
# Backward
G = (y_train.T-Y_hat)*Y_hat*(1-Y_hat)
Delta_W = eta * G @ B.T /y_train.shape[0]
Delta_Theta = np.sum(eta*G,axis=1) /y_train.shape[0]
Delta_Theta = Delta_Theta.reshape(Delta_Theta.shape[0],1)
E = -(W.T @ G) * B * (1-B)
Delta_V = eta * E @ X_train /y_train.shape[0]
Delta_Gamma = - eta * np.sum(E,axis=1) /y_train.shape[0]
Delta_Gamma = Delta_Gamma.reshape(Delta_Gamma.shape[0],1) # Change the size from (Node,) to (
Node,1)
# Improve with the learning rate and the overall descent direction
W = W + Delta_W
Theta = Theta + Delta_Theta
V = V + Delta_V
Gamma = Delta_Gamma
error = np.sum(Ek)/np.sum(y_train**2)
Iteration = Iteration + 1
print("Iteration:",Iteration,"Error is", error)
if error < tol:
break
# Prediction
Alpha = V @ X_test.T
B = 1/(1 + np.exp (-(Alpha - Gamma)))
Beta = W @ B
Y_hat_test = 1/(1 + np.exp(-(Beta - Theta)))
y_hat_test = Y_hat_test.T
Ek_test = 0.5*np.sum((y_hat_test - y_test)**2)
y_pred = y_hat_test
print('The loss (score) of training is', Ek_test)